

### **Final Project Presentation**

Course:

Christopher Allen + Ellen Reinhard 4.464 Building Technology

Instructor: Teaching Assistants: Prof. Christoph Reinhart Alpha Arsano Yu Qian Ang

# Content

- 1. Introduction
- 2. Context
- 3. Daylight
- 4. Optimizations
- 5. Two C's
- 6. Office Concept
- 7. Open topics Q&A!



### 1. Introduction

### EUI target, design philosophy







Benchmark Lower energy use than of comparable buildings in the U.S.



Sun path

### 2. Context



State: Texas

**City: Amarillo** 

+ Address: SE 6th Ave, Amarillo, TX 79101

#### Walkscores



A few nearby public transportation options.

Walk Score

55

15 points higher compared to Amarillo overall walkscore of 40



#### Somewhat Walkable

Some errands can be accomplished on foot.



Somewhat Bikeable Minimal bike infrastructure.

### 2. Context

### **DIVA Shading Study, climaplus**

#### Montly Facade Radiation



#### Higher annual solar radiation





June 21st 9:00am - 17:00pm



December 21st 9:00am - 17:00pm



## Humid & colder summer mornings



#### Dry and warm summer afternoons



### 2. Context

### **DIVA Shading Study, climaplus**

Horizontal Bio-representation Bi

Montly Facade Radiation

Higher annual solar radiation





June 21st 9:00am - 17:00pm



December 21st 9:00am - 17:00pm





#### Dry and warm summer afternoons





ETH HIT e-science Lab, Zurich

Architects: baumschlager eberle architekten

All photos were selected from Google search





### **Ricola Marketing Building, Laufen**

Architects: Herzog & de Meuron

Landscape design: Vogt Landschaftsarchitekten

## 3. Daylight

#### **Massing Studies**



## **Option 3**

## 3. Daylight

Visual Comfort analysis & shading systems

#### Hemispheric glare map December 21st at noon





WWR ca. 60% to 40%



9.9%

Average Lux at 1267

### Sawtooth façade





### 3. Daylight --> Updated Daylight Analysis



16.12.2020 | Final Project Presentation



- 0.7 %





## 3. Daylight

#### Visual Comfort analysis & shading systems









**Building performance optimization** 



Energy Use Intensity (kWh/m<sup>2</sup> yr)

sities

cade (for daylighting)

#### Electric lighting proposal with overview plan







Focal Point: Seem 1 Acoustic, Direct/Indirect LED, Batwing/Regress Lens

5200 lm/ 4 ft. length

3500K

### LPW



**Signify:** TruGrooves Shapes, Suspended Direct LED

1500 lm/ 2 ft. x 2 ft.

3500K

#### Thermal envelope with sections



The fins take up a wall length of approx. 4,4m (1 fin = 0.05m x 88fins) that is taken into account the thermal model.

Window

Zones



### Schedules



Occupancy

### **Lighting Controls**

Lighting Power Density = 4.42 kWh/m<sup>2</sup>



#### Equipment

#### Schedule correlates with occupancy



Jan 7

#### **Schedules**

Weekdays

#### **Heating Setpoints**

**Cooling Setpoints** 

Unoccupied = **30.0°C**, occupied = **24.0 °C** 



Unoccupied = **15.6** °C, occupied = **18.0** °C



Saturdays

Sundays



Features





#### **Equipment Power Density**

#### 6.00 kWh/m<sup>2</sup>

170 laptops, 8 printers, 10 desktops

Open Office concept: Flexible workstations and hot desks

### 5. Two C's

**PV** system

0 RadMap 2 **Total Solar Exposure** • ٠ All Hours = 1875 kWh/m2-yr All Surfaces 200 175 150 125 kWh/m<sup>3</sup> 100 75 50 25 Feb Mar Apr May Jul Aug Sep Oct Nov Dec Jan Jun Solar Exposure kWh/m<sup>2</sup> 300 0 All Surfaces: <u>1875 kWh/m<sup>2</sup>/yr</u> Percent of PV covered by the PV system: 105.1% 121,500 kWh /115,564 kWh Target energy use -> 44.4kWh/2,600m<sup>2</sup>= 115.564 kWh 250 PVs x 1.5m<sup>2</sup> x 1,875 Wh/m<sup>2</sup> x 0.18 x 0.96 = **121,500 kWh** 

#### **Electricity yield calculation**

#### **Financial Analysis**



### 5. Two C´s





### 6. Office Concept

Sample floor plans



102 m



### 6. Office Concept

Sample floor plans



## **Ground Floor**

26 Workstations 4 meeting rooms



Work spaces Second Floor



(A)

L.L

Section 2

### 6. Office Concept

Sample floor plans



102 m



### 6. Office Concept

Sample floor plans



### 1st - 3rd floor

154 Workstations 6 meeting rooms



## 7. Open Topics

Natural ventilation Fin design Courtyard development





We welcome any questions!